
課題：手書き数字を8×8(各要素は0～16の整数値）のビットマップ画像の64次元ベクトル x として入力すると、その数字 y を予測する。

y = f(p, x)

「手書き数字」認識課題

データセットの読み込みkeyboard_arrow_down

from sklearn.datasets import load_digits

digits = load_digits() # データセットの読み込み

(1) データセットの確認keyboard_arrow_down

digits.keys()

dict_keys(['data', 'target', 'frame', 'feature_names', 'target_names', 'images', 'DESCR'])

print(digits.DESCR) # データ数：1797、特徴量：64（8×8）

.. _digits_dataset:

Optical recognition of handwritten digits dataset

--

Data Set Characteristics:

:Number of Instances: 1797

:Number of Attributes: 64
:Attribute Information: 8x8 image of integer pixels in the range 0..16.
:Missing Attribute Values: None

:Creator: E. Alpaydin (alpaydin '@' boun.edu.tr)
:Date: July; 1998

This is a copy of the test set of the UCI ML hand-written digits datasets
https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits

The data set contains images of hand-written digits: 10 classes where
each class refers to a digit.

Preprocessing programs made available by NIST were used to extract
normalized bitmaps of handwritten digits from a preprinted form. From a

total of 43 people, 30 contributed to the training set and different 13
to the test set. 32x32 bitmaps are divided into nonoverlapping blocks of
4x4 and the number of on pixels are counted in each block. This generates

an input matrix of 8x8 where each element is an integer in the range
0..16. This reduces dimensionality and gives invariance to small
distortions.

For info on NIST preprocessing routines, see M. D. Garris, J. L. Blue, G.

T. Candela, D. L. Dimmick, J. Geist, P. J. Grother, S. A. Janet, and C.
L. Wilson, NIST Form-Based Handprint Recognition System, NISTIR 5469,
1994.

.. dropdown:: References

 - C. Kaynak (1995) Methods of Combining Multiple Classifiers and Their
 Applications to Handwritten Digit Recognition, MSc Thesis, Institute of
 Graduate Studies in Science and Engineering, Bogazici University.

 - E. Alpaydin, C. Kaynak (1998) Cascading Classifiers, Kybernetika.
 - Ken Tang and Ponnuthurai N. Suganthan and Xi Yao and A. Kai Qin.
 Linear dimensionalityreduction using relevance weighted LDA. School of

 Electrical and Electronic Engineering Nanyang Technological University.
 2005.

 - Claudio Gentile. A New Approximate Maximal Margin Classification
 Algorithm. NIPS. 2000.

print(digits.target_names)

[0 1 2 3 4 5 6 7 8 9]

print(digits.feature_names) # 特徴量の名前

['pixel_0_0', 'pixel_0_1', 'pixel_0_2', 'pixel_0_3', 'pixel_0_4', 'pixel_0_5', 'pixel_0_6', 'pixel_0_7', 'pixel_1_0', 'pixel_1_1', 'pixel_1_2', '

コードadd テキストadd

2024/12/31 22:04 so_digits_20241231.ipynb - Colab

https://colab.research.google.com/drive/16pjI-59ndaEk40xhyi1hJcQKyYHhP2fI?hl=ja#scrollTo=tpio5Eg0rqDY&printMode=true 1/10

https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits

print(type(digits.data)) # numpy.ndarray

print(digits.data.shape) # 個数: 1797, 要素数: 64

<class 'numpy.ndarray'>
(1797, 64)

print(digits.data[:5])

[[0. 0. 5. 13. 9. 1. 0. 0. 0. 0. 13. 15. 10. 15. 5. 0. 0. 3.
 15. 2. 0. 11. 8. 0. 0. 4. 12. 0. 0. 8. 8. 0. 0. 5. 8. 0.
 0. 9. 8. 0. 0. 4. 11. 0. 1. 12. 7. 0. 0. 2. 14. 5. 10. 12.

 0. 0. 0. 0. 6. 13. 10. 0. 0. 0.]
 [0. 0. 0. 12. 13. 5. 0. 0. 0. 0. 0. 11. 16. 9. 0. 0. 0. 0.

 3. 15. 16. 6. 0. 0. 0. 7. 15. 16. 16. 2. 0. 0. 0. 0. 1. 16.
 16. 3. 0. 0. 0. 0. 1. 16. 16. 6. 0. 0. 0. 0. 1. 16. 16. 6.
 0. 0. 0. 0. 0. 11. 16. 10. 0. 0.]

 [0. 0. 0. 4. 15. 12. 0. 0. 0. 0. 3. 16. 15. 14. 0. 0. 0. 0.
 8. 13. 8. 16. 0. 0. 0. 0. 1. 6. 15. 11. 0. 0. 0. 1. 8. 13.
 15. 1. 0. 0. 0. 9. 16. 16. 5. 0. 0. 0. 0. 3. 13. 16. 16. 11.

 5. 0. 0. 0. 0. 3. 11. 16. 9. 0.]
 [0. 0. 7. 15. 13. 1. 0. 0. 0. 8. 13. 6. 15. 4. 0. 0. 0. 2.
 1. 13. 13. 0. 0. 0. 0. 0. 2. 15. 11. 1. 0. 0. 0. 0. 0. 1.

 12. 12. 1. 0. 0. 0. 0. 0. 1. 10. 8. 0. 0. 0. 8. 4. 5. 14.
 9. 0. 0. 0. 7. 13. 13. 9. 0. 0.]
 [0. 0. 0. 1. 11. 0. 0. 0. 0. 0. 0. 7. 8. 0. 0. 0. 0. 0.

 1. 13. 6. 2. 2. 0. 0. 0. 7. 15. 0. 9. 8. 0. 0. 5. 16. 10.
 0. 16. 6. 0. 0. 4. 15. 16. 13. 16. 1. 0. 0. 0. 0. 3. 15. 10.

 0. 0. 0. 0. 0. 2. 16. 4. 0. 0.]]

print(type(digits.target)) # numpy.ndarray

print(digits.target.shape) # データ数: 1797, 要素数: 1

<class 'numpy.ndarray'>
(1797,)

print(digits.target[:100])

[0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 9 5 5 6 5 0
 9 8 9 8 4 1 7 7 3 5 1 0 0 2 2 7 8 2 0 1 2 6 3 3 7 3 3 4 6 6 6 4 9 1 5 0 9
 5 2 8 2 0 0 1 7 6 3 2 1 7 4 6 3 1 3 9 1 7 6 8 4 3 1]

各数字のデータ個数

digits_target_list = list(digits.target)

for n in range(10):

 print(f"{n}: {digits_target_list.count(n)}")

0: 178
1: 182
2: 177

3: 183
4: 181

5: 182
6: 181
7: 179

8: 174
9: 180

print(type(digits.images)) # numpy.ndarray

print(digits.images.shape) # imageは8x8の2次元配列

<class 'numpy.ndarray'>

(1797, 8, 8)

print(digits.images[:5])

[[[0. 0. 5. 13. 9. 1. 0. 0.]
 [0. 0. 13. 15. 10. 15. 5. 0.]

 [0. 3. 15. 2. 0. 11. 8. 0.]
 [0. 4. 12. 0. 0. 8. 8. 0.]
 [0. 5. 8. 0. 0. 9. 8. 0.]

 [0. 4. 11. 0. 1. 12. 7. 0.]
 [0. 2. 14. 5. 10. 12. 0. 0.]

 [0. 0. 6. 13. 10. 0. 0. 0.]]

 [[0. 0. 0. 12. 13. 5. 0. 0.]

 [0. 0. 0. 11. 16. 9. 0. 0.]
 [0. 0. 3. 15. 16. 6. 0. 0.]
 [0. 7. 15. 16. 16. 2. 0. 0.]

 [0. 0. 1. 16. 16. 3. 0. 0.]
 [0. 0. 1. 16. 16. 6. 0. 0.]
 [0. 0. 1. 16. 16. 6. 0. 0.]

2024/12/31 22:04 so_digits_20241231.ipynb - Colab

https://colab.research.google.com/drive/16pjI-59ndaEk40xhyi1hJcQKyYHhP2fI?hl=ja#scrollTo=tpio5Eg0rqDY&printMode=true 2/10

 [0. 0. 0. 11. 16. 10. 0. 0.]]

 [[0. 0. 0. 4. 15. 12. 0. 0.]
 [0. 0. 3. 16. 15. 14. 0. 0.]
 [0. 0. 8. 13. 8. 16. 0. 0.]

 [0. 0. 1. 6. 15. 11. 0. 0.]
 [0. 1. 8. 13. 15. 1. 0. 0.]

 [0. 9. 16. 16. 5. 0. 0. 0.]
 [0. 3. 13. 16. 16. 11. 5. 0.]
 [0. 0. 0. 3. 11. 16. 9. 0.]]

 [[0. 0. 7. 15. 13. 1. 0. 0.]
 [0. 8. 13. 6. 15. 4. 0. 0.]

 [0. 2. 1. 13. 13. 0. 0. 0.]
 [0. 0. 2. 15. 11. 1. 0. 0.]
 [0. 0. 0. 1. 12. 12. 1. 0.]

 [0. 0. 0. 0. 1. 10. 8. 0.]
 [0. 0. 8. 4. 5. 14. 9. 0.]
 [0. 0. 7. 13. 13. 9. 0. 0.]]

 [[0. 0. 0. 1. 11. 0. 0. 0.]

 [0. 0. 0. 7. 8. 0. 0. 0.]
 [0. 0. 1. 13. 6. 2. 2. 0.]
 [0. 0. 7. 15. 0. 9. 8. 0.]

 [0. 5. 16. 10. 0. 16. 6. 0.]
 [0. 4. 15. 16. 13. 16. 1. 0.]
 [0. 0. 0. 3. 15. 10. 0. 0.]

 [0. 0. 0. 2. 16. 4. 0. 0.]]]

(2) データ画像を確認keyboard_arrow_down

最初の100個のデータを表示

import matplotlib.pyplot as plt

plt.figure(figsize=(20, 5))

for i in range(100):

 plt.subplot(5, 20, i + 1) # 5x20のグリッドに配置

 plt.imshow(digits.images[i], cmap='gray')

 plt.title(digits.target[i])

 plt.axis('off') # 軸を非表示

plt.tight_layout() # レイアウト調整

plt.show()

(3) 特徴量をプロットkeyboard_arrow_down

import matplotlib.pyplot as plt

import numpy as np

fig, ax = plt.subplots()

x = digits.data[:, 12]

y = digits.data[:, 20]

散布図を作成

scatter = ax.scatter(x, y, c=digits.target, cmap='viridis')

凡例用のラベルを作成

handles, labels = scatter.legend_elements()

凡例を表示 (図の外側右横に表示)

ax.legend(handles, labels, loc='center left', bbox_to_anchor=(1, 0.5), title="digits")

2024/12/31 22:04 so_digits_20241231.ipynb - Colab

https://colab.research.google.com/drive/16pjI-59ndaEk40xhyi1hJcQKyYHhP2fI?hl=ja#scrollTo=tpio5Eg0rqDY&printMode=true 3/10

plt.show()

データは64次元空間の点、値は0～16。次元が高いので単純な2次元プロットではクラス分けの可否を判定できない。

特徴量の3次元プロット

fig, ax = plt.subplots(subplot_kw={"projection": "3d"})

x = digits.data[:, 12]

y = digits.data[:, 20]

z = digits.data[:, 28]

散布図を作成

scatter = ax.scatter(x, y, z, c=digits.target, cmap='viridis')

ax.set_xlabel("12")

ax.set_ylabel("20")

ax.set_zlabel("36")

凡例を表示 (図の外側右横に表示)

ax.legend(handles, labels, loc='center left', bbox_to_anchor=(1.2, 0.5), title="digits")

plt.show()

単純に3次元プロットしてもクラス分けの可否は分からない。

数字画像は 64 次元 (8x8 ピクセル) のデータであるが、PCA(Principal Component Analysis) を用いて次元数を削減することで、主要な特徴を
保持したまま 2 次元または 3 次元で可視化できる。これにより、数字のクラスごとにデータがどのように分布しているのか、視覚的に確認で
きる。 主成分分析(PCA)は、高次元データをより低次元で表現するための手法である。

PCAの仕組み:

主成分分析 (PCA) を用いて次元削減を行い、2次元または3次元で可視化する

2024/12/31 22:04 so_digits_20241231.ipynb - Colab

https://colab.research.google.com/drive/16pjI-59ndaEk40xhyi1hJcQKyYHhP2fI?hl=ja#scrollTo=tpio5Eg0rqDY&printMode=true 4/10

データの分散を最大化する方向を探す: PCAは、データが最もばらついている方向を探す。この方向が、データの特徴を最もよく表す第1主成
分となる。 第1主成分と直交する方向を探す: 次に、第1主成分と直交する方向で、データの分散が最大となる方向を探します。これが第2主成
分となります。 主成分を必要な数だけ求める: このように、分散が最大となる方向を順番に求めていくことで、必要な数だけ主成分を求める
ことができる。

主成分2次元で可視化keyboard_arrow_down

First Principal Component: ['0.e+00', '-1.731e-02', '-2.234e-01', '-1.359e-01', '-3.303e-02', '-9.663e-02', '-8.329e-03', '2.269e-03', '-3.205e-0
Second Principal Component: ['0.e+00', '1.011e-02', '4.908e-02', '9.433e-03', '5.360e-02', '1.178e-01', '6.213e-02', '7.936e-03', '1.632e-04', '2

from sklearn.decomposition import PCA

手書き数字データの読み込み

X = digits.data

y = digits.target

PCA を用いて 2 次元に次元削減

pca = PCA(n_components=2)

X_reduced = pca.fit_transform(X)

2 次元で可視化

plt.figure(figsize=(8, 6))

plt.scatter(X_reduced[:, 0], X_reduced[:, 1], c=y, cmap='viridis')

plt.colorbar()

plt.title('Handwritten Digits Data (PCA)')

plt.xlabel('Principal Component 1')

plt.ylabel('Principal Component 2')

plt.show()

第1，2主成分

first_principal_component = pca.components_[0]

second_principal_component = pca.components_[1]

有効数字3桁で主成分ベクトル表示

print("First Principal Component:", [np.format_float_scientific(x, precision=3) for x in first_principal_component])

print("Second Principal Component:", [np.format_float_scientific(x, precision=3) for x in second_principal_component])

主成分3次元で可視化keyboard_arrow_down

from mpl_toolkits.mplot3d import Axes3D # 3Dプロットに必要なライブラリ

2024/12/31 22:04 so_digits_20241231.ipynb - Colab

https://colab.research.google.com/drive/16pjI-59ndaEk40xhyi1hJcQKyYHhP2fI?hl=ja#scrollTo=tpio5Eg0rqDY&printMode=true 5/10

First Principal Component: ['0.e+00', '-1.731e-02', '-2.234e-01', '-1.359e-01', '-3.303e-02', '-9.663e-02', '-8.329e-03', '2.269e-03', '-3.205e-0
Second Principal Component: ['0.e+00', '1.011e-02', '4.908e-02', '9.433e-03', '5.360e-02', '1.178e-01', '6.213e-02', '7.936e-03', '1.632e-04', '2

Third Principal Component: ['0.e+00', '-1.834e-02', '-1.265e-01', '-1.322e-01', '1.340e-01', '2.649e-01', '1.166e-01', '1.684e-02', '-3.94e-04',

PCAを用いて3次元に次元削減

pca = PCA(n_components=3) # 次元数を3に設定

X_reduced = pca.fit_transform(X)

3次元で可視化

fig = plt.figure(figsize=(10, 8))

ax = fig.add_subplot(111, projection='3d') # 3Dプロットを作成

ax.scatter(X_reduced[:, 0], X_reduced[:, 1], X_reduced[:, 2], c=y, cmap='viridis') # y = digits.target

ax.set_xlabel('Principal Component 1')

ax.set_ylabel('Principal Component 2')

ax.set_zlabel('Principal Component 3')

plt.title('Handwritten Digits Data (PCA - 3D)')

plt.show()

first_principal_component = pca.components_[0]

second_principal_component = pca.components_[1]

third_principal_component = pca.components_[2]

有効数字3桁で主成分ベクトル表示

print("First Principal Component:", [np.format_float_scientific(x, precision=3) for x in first_principal_component])

print("Second Principal Component:", [np.format_float_scientific(x, precision=3) for x in second_principal_component])

print("Third Principal Component:", [np.format_float_scientific(x, precision=3) for x in third_principal_component])

!pip install plotly==5.13.1

Collecting plotly==5.13.1
 Downloading plotly-5.13.1-py2.py3-none-any.whl.metadata (7.0 kB)

Requirement already satisfied: tenacity>=6.2.0 in /usr/local/lib/python3.10/dist-packages (from plotly==5.13.1) (9.0.0)
Downloading plotly-5.13.1-py2.py3-none-any.whl (15.2 MB)
 ━━ 15.2/15.2 MB 67.0 MB/s eta 0:00:00

Installing collected packages: plotly
 Attempting uninstall: plotly

 Found existing installation: plotly 5.24.1
 Uninstalling plotly-5.24.1:
 Successfully uninstalled plotly-5.24.1

Successfully installed plotly-5.13.1

import plotly.express as px

PCAを用いて3次元に次元削減

2024/12/31 22:04 so_digits_20241231.ipynb - Colab

https://colab.research.google.com/drive/16pjI-59ndaEk40xhyi1hJcQKyYHhP2fI?hl=ja#scrollTo=tpio5Eg0rqDY&printMode=true 6/10

Handwritten Digits Data (PCA - 3D - Interactive)

pca = PCA(n_components=3)

X_reduced = pca.fit_transform(X)

plotly.expressで3次元散布図を作成

fig = px.scatter_3d(x=X_reduced[:, 0], y=X_reduced[:, 1], z=X_reduced[:, 2],

 color=y,

 labels={'x': 'Principal Component 1', 'y': 'Principal Component 2', 'z': 'Principal Component 3'},

 title='Handwritten Digits Data (PCA - 3D - Interactive)',

) # 点の最大サイズを指定 # Corrected indentation

点のサイズを小さく設定

fig.update_traces(marker=dict(size=2)) # sizeの値を小さくする

fig.show()

(4) 機械学習: Support Vector Machinekeyboard_arrow_down

▾ SVC ?i

SVC()

データとラベルを抽出

from sklearn.model_selection import train_test_split

X = digits.data # ベクトル（配列）は大文字にするのが習慣

y = digits.target

データセットを訓練データとテストデータに分割

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=9)

from sklearn.svm import SVC

from sklearn.metrics import accuracy_score

SVMモデルのインスタンス作成と訓練

model = SVC()

model.fit(X_train, y_train)

(5) テストkeyboard_arrow_down

テストデータに対する予測

y_pred = model.predict(X_test)

精度の評価

accuracy = accuracy_score(y_test, y_pred)

print(f"予測精度: {accuracy:.5f}")

2024/12/31 22:04 so_digits_20241231.ipynb - Colab

https://colab.research.google.com/drive/16pjI-59ndaEk40xhyi1hJcQKyYHhP2fI?hl=ja#scrollTo=tpio5Eg0rqDY&printMode=true 7/10

https://scikit-learn.org/1.6/modules/generated/sklearn.svm.SVC.html

n_wrong = (y_pred != y_test).sum()

print(f"間違った予測の数: {n_wrong}")

予測精度: 0.98889
間違った予測の数: 4

間違った予測の可視化

fig, axes = plt.subplots(1, n_wrong, figsize=(15, 2))

k = 0

for i in range(len(y_test)):

 if y_pred[i] != y_test[i]:

 axes[k].imshow(X_test[i].reshape(8, 8), cmap='gray')

 axes[k].set_title(f"P: {y_pred[i]}, C: {y_test[i]}")

 axes[k].axis('off')

 k += 1

plt.show()

あるデータに対する予測値は、学習データの中で最も近いデータのラベル（クラス）とする。なお、kはパラメータで最も近いk個の最近傍デ
ータの多数決でクラスを決める。

機械学習：k-最近傍keyboard_arrow_down

from sklearn.neighbors import KNeighborsClassifier

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

データの規格化

X_train_std = scaler.fit_transform(X_train)

X_test_std = scaler.transform(X_test)

digits_knn = KNeighborsClassifier(n_neighbors=3)

digits_knn.fit(X_train_std, y_train)

digits_knn_score = digits_knn.score(X_test_std, y_test)

print(f'digits_knn_score= {digits_knn_score:.5f}')

digits_knn_score= 0.97222

Colab上で手書き数字を描き、手書き数字認識するkeyboard_arrow_down

参考：　https://qiita.com/MKen_bu/items/2603700fa8ae65c92a6b

from IPython.display import display, HTML # IPythonのHTML(), display()を利用

from google.colab import output

from google.colab.output import eval_js # PythonからJavaScript関数の呼び出し

import base64 # canvasデータ（base64エンコード）をデコード

import re # 正規表現

import io

from PIL import Image, ImageFilter

import numpy as np

html = HTML('''

<canvas id="canvas" height="140" width="140" style="border-style: solid; border-color: black;"></canvas>

<div>

 <button type="button" id="predictBtn" style="margin-top:20px">予測</button>

 <button type="button" id="clearBtn" style="margin-top:20px">クリア</button>

</div>

<div id="resultDiv"></div>

<!-- Fabric.jsの読み込み：Canvasライブラリ -->

2024/12/31 22:04 so_digits_20241231.ipynb - Colab

https://colab.research.google.com/drive/16pjI-59ndaEk40xhyi1hJcQKyYHhP2fI?hl=ja#scrollTo=tpio5Eg0rqDY&printMode=true 8/10

予測 クリア

<script src="https://cdnjs.cloudflare.com/ajax/libs/fabric.js/4.5.0/fabric.min.js"></script>

<script>

 const canvas = new fabric.Canvas("canvas", {isDrawingMode: true, backgroundColor: 'black'});

 canvas.freeDrawingBrush.width = 16;

 canvas.freeDrawingBrush.color = 'white';

 // https://colab.research.google.com/notebooks/snippets/advanced_outputs.ipynb#scrollTo=QS5x4lFf0fJE

 document.getElementById("predictBtn").addEventListener("click", () => {

 //The callback name, The arguments, kwargs

 google.colab.kernel.invokeFunction('PredictImage', [canvas.toDataURL()], {})

 });

 document.getElementById("clearBtn").addEventListener("click", () => {

 canvas.clear();

 canvas.backgroundColor = 'black';

 });

 displayResult = (array, n) => {

 document.getElementById("resultDiv").insertAdjacentHTML('afterbegin', '<div style="margin-bottom: 1em">' + array + '
予測値:

 };

</script>

''')

display(html) # htmlを表示

Python --

def predictImage(imageCode):

 # canvasデータ取得

 decodedImage = base64.b64decode(re.sub('data:image/png;base64,', '', imageCode))

 # pilで読み込み

 pil_image = Image.open(io.BytesIO(decodedImage))

 # グレイスケール

 pil_image_gray = pil_image.convert("L") # 8bitグレイスケール

 # リサイズ

 resized_image = pil_image_gray.resize((8, 8))

 np_image = np.array(resized_image, dtype=int)

 # 正規化

 np_image //= 16

 #1次元化: 64次元ベクトル

 x = np_image.reshape(64)

 prediction = model.predict([x])

 n = prediction[0]

 array = ""

 for i in range(64):

 array += str(x[i]) + '
' if (i+1) % 8 == 0 else str(x[i]) + ','

 #print(array)

 #print("予測値", n)

 #id="resuletDiv"の先頭に追加:jsからPython

 eval_js('displayResult("{}","{}")'.format(array, n))

 #print(f'{np_image=}')

 #print('予測結果： ', prediction[0])

output.register_callback('PredictImage', predictImage)

参考：Geminiが提示したコード --keyboard_arrow_down

2024/12/31 22:04 so_digits_20241231.ipynb - Colab

https://colab.research.google.com/drive/16pjI-59ndaEk40xhyi1hJcQKyYHhP2fI?hl=ja#scrollTo=tpio5Eg0rqDY&printMode=true 9/10

予測精度: 0.975

prompt: sikit-learnから手書き数字のデータセットを読込、手書き数字認識して下さい

import matplotlib.pyplot as plt

from sklearn.datasets import load_digits

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import accuracy_score

データセットの読み込み

digits = load_digits()

データとラベルを抽出

X = digits.data

y = digits.target

データセットを訓練データとテストデータに分割

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

ロジスティック回帰モデルのインスタンス作成と訓練

model = LogisticRegression(max_iter=10000) # max_iterを増やすことで収束しない問題を回避

model.fit(X_train, y_train)

テストデータに対する予測

y_pred = model.predict(X_test)

精度の評価

accuracy = accuracy_score(y_test, y_pred)

print(f"予測精度: {accuracy}")

予測結果の可視化（最初の5個）

fig, axes = plt.subplots(1, 5, figsize=(10, 2))

for i in range(5):

 axes[i].imshow(X_test[i].reshape(8, 8), cmap='gray')

 axes[i].set_title(f"Predicted: {y_pred[i]}, Actual: {y_test[i]}")

 axes[i].axis('off')

plt.show()

2024/12/31 22:04 so_digits_20241231.ipynb - Colab

https://colab.research.google.com/drive/16pjI-59ndaEk40xhyi1hJcQKyYHhP2fI?hl=ja#scrollTo=tpio5Eg0rqDY&printMode=true 10/10

